Koszul and quasi-Koszul algebras obtained by tilting

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Koszul Duality for Stratified Algebras I. Quasi-hereditary Algebras

We give a complete picture of the interaction between Koszul and Ringel dualities for quasi-hereditary algebras admitting linear tilting (co)resolutions of standard and costandard modules. We show that such algebras are Koszul, that the class of these algebras is closed with respect to both dualities and that on this class these two dualities commute. All arguments reduce to short computations ...

متن کامل

Selfinjective Koszul Algebras

The study of Koszul algebras and their representations has accelerated significantly in the last few years. They have been used in Topology, Algebraic Geometry and Commutative Algebra and they are used more and more frequently in Representation Theory, see for instance [BGS],[GTM],[M],[MZ] and [R]. The aim of this paper is to present some of the results presented by the second author at the Lum...

متن کامل

1 Koszul Algebras

The algebras Qn describe the relationship between the roots and coefficients of a non-commutative polynomial. I.Gelfand, S.Gelfand, and V. Retakh have defined quotients of these algebras corresponding to graphs. In this work we find the Hilbert series of the class of algebras corresponding to the n-vertex path, Pn. We also show this algebra is Koszul. We do this by first looking at class of qua...

متن کامل

Koszul Algebras and Their Syzygies

Koszul algebras, introduced by Priddy in [P], are positively graded Kalgebras R whose residue field K has a linear free resolution as an R-module. Here linear means that the non-zero entries of the matrices describing the maps in the R-free resolution of K have degree 1. For example, the polynomial ring S = K[x1, . . . ,xn] over a field K (i.e the symmetric algebra SymK(V ) of a n-dimensional K...

متن کامل

Koszul Algebras Associated to Graphs

Quadratic algebras associated to graphs have been introduced by I. Gelfand, S. Gelfand, and Retakh in connection with decompositions of noncommutative polynomials. Here we show that, for each graph with rare triangular subgraphs, the corresponding quadratic algebra is a Koszul domain with global dimension equal to the number of vertices of the graph.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Colloquium Mathematicum

سال: 2002

ISSN: 0010-1354,1730-6302

DOI: 10.4064/cm92-2-5