Koszul and quasi-Koszul algebras obtained by tilting
نویسندگان
چکیده
منابع مشابه
Koszul Duality for Stratified Algebras I. Quasi-hereditary Algebras
We give a complete picture of the interaction between Koszul and Ringel dualities for quasi-hereditary algebras admitting linear tilting (co)resolutions of standard and costandard modules. We show that such algebras are Koszul, that the class of these algebras is closed with respect to both dualities and that on this class these two dualities commute. All arguments reduce to short computations ...
متن کاملSelfinjective Koszul Algebras
The study of Koszul algebras and their representations has accelerated significantly in the last few years. They have been used in Topology, Algebraic Geometry and Commutative Algebra and they are used more and more frequently in Representation Theory, see for instance [BGS],[GTM],[M],[MZ] and [R]. The aim of this paper is to present some of the results presented by the second author at the Lum...
متن کامل1 Koszul Algebras
The algebras Qn describe the relationship between the roots and coefficients of a non-commutative polynomial. I.Gelfand, S.Gelfand, and V. Retakh have defined quotients of these algebras corresponding to graphs. In this work we find the Hilbert series of the class of algebras corresponding to the n-vertex path, Pn. We also show this algebra is Koszul. We do this by first looking at class of qua...
متن کاملKoszul Algebras and Their Syzygies
Koszul algebras, introduced by Priddy in [P], are positively graded Kalgebras R whose residue field K has a linear free resolution as an R-module. Here linear means that the non-zero entries of the matrices describing the maps in the R-free resolution of K have degree 1. For example, the polynomial ring S = K[x1, . . . ,xn] over a field K (i.e the symmetric algebra SymK(V ) of a n-dimensional K...
متن کاملKoszul Algebras Associated to Graphs
Quadratic algebras associated to graphs have been introduced by I. Gelfand, S. Gelfand, and Retakh in connection with decompositions of noncommutative polynomials. Here we show that, for each graph with rare triangular subgraphs, the corresponding quadratic algebra is a Koszul domain with global dimension equal to the number of vertices of the graph.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Colloquium Mathematicum
سال: 2002
ISSN: 0010-1354,1730-6302
DOI: 10.4064/cm92-2-5